百家乐技巧-明陞百家乐官网娱乐城_百家乐线路图分析_全讯网官方网站 (中国)·官方网站

計算數學與控制系

高級講師

SMBU

作者:    審核:    發布時間:2023-09-12    閱讀次數:

Dr. Chaikovskii Dmitrii

Senior Lecturer

Contact Information:

Postal address: Shenzhen MSU-BIT University, 1 International University Park Road, Longgang District, 518172 Shenzhen, Guangdong Province, China.

Office: Room 333, Main Building.

Email: dmitriich@smbu.edu.cn


Education
PhD in
Applied Mathematics, East China Normal University, 2020.

MS in Mechanics and Mathematics, Lomonosov Moscow State University, 2014.

BS in Materials Science, International University Dubna, 2012.



Professional Appointments
Aug. 2023 – present, Senior Lecturer, Faculty of Computational Mathematics and Cybernetics, Shenzhen MSU-BIT University.
Sep. 2020 – Aug. 2023, Postdoc, Faculty of Computational Mathematics and Cybernetics, Shenzhen MSU-BIT University.


Fundings

Principal investigator:

?01/2024 -- 12/2025, National Natural Science Fund of China (Grant No. 12350410359), Principal Investigator, (外國學者研究基金項目, 400000 CNY).

?11/2013 -- 06/2014, Foundation for Assistance to Small Innovative Enterprises in Science and Technology (Moscow, RU), (Grant No.  726ГУ1/2013), Principal investigator.

Participant:

?01/2025--12/2026, National Natural Science Foundation of China (NSFC), 二階漸近正則化方法及其在液相 色譜反問題中的應用, (Grant No. W2421102), Participant, (面上項目, 200000 CNY).

?01/2022--12/2025, National Natural Science Foundation of China (NSFC), 液相色譜法反問題的數學建模與新正則化方法, (Grant No. 12171036), Participant, (面上項目, 510000 CNY).

? 08/2021--08/2025, Beijing Natural Science Foundation (Grant No. Z210001), Modern Regularization Methods of Inverse Problems and Their Applications, Participant, (重點項目, 2 million CNY)

? 01/2021--12/2022, Shenzhen Science and technology innovation Commission (Grant No. 20200827173701001), New algroithms of inverse problems and their applications, Participant, (穩定支持項目, 500000 CNY).

? 01/2019--12/2022, National Natural Science Foundation of China, (Grant No. 11871217), 右端不連續奇攝動系統的多尺度研究, Participant, (面上項目, 530000 CNY).



Publications (*Corresponding author)

[17] Pirutin S., Chaikovskii D*., Shank M., Chivarzin M., Jia S., Yusipovich A., Suvorov O., Zhao Y., Bezryadnov D., Rubin A. Investigation of Cell Damage Induced by Silver Nanoparticles in a Model Cell System. Pharmaceutics, Vol.?17, No.?4, 2025, p.?398. https://doi.org/10.3390/pharmaceutics17040398

[16] Liubavin A., Ni M., Zhang Y., Chaikovskii D*. Asymptotic Solution for Three?Dimensional Reaction–Diffusion–Advection Equation with Periodic Boundary Conditions. Differential Equations, Vol.?60, No.?9, Sep?2024, pp.?1134–1152. https://doi.org/10.1134/S0012266124090027

[15] Melnikov B., Chaikovskii D. On the Application of Heuristics of the TSP for the Task of Restoring the DNA Matrix. Frontiers in Artificial Intelligence and Applications, Vol.?385, 2024, pp.?36–44. http://dx.doi.org/10.3233/FAIA240134

[14] Melnikov B., Chaikovskii D. Pseudogeometric Version of the Traveling Salesman Problem, Its Application in Quantum Physics Models and Some Heuristic Algorithms for Its Solution. Springer Proceedings in Mathematics and Statistics, Vol.?446, 2024, pp.?391–401. http://dx.doi.org/10.1007/978-3-031-52965-8_32

[13] Bryukhanov I.A., Chaikovskii D. Role of Solid Solution Strengthening on Shock Wave Compression of [111] Copper Crystals. Journal of Applied Physics, Vol.?135, No.?22, 2024. https://doi.org/10.1063/5.0203961

[12] Melnikov B. and Chaikovskii D.*. Some General Heuristics in the Traveling Salesman Problem and the Problem of Reconstructing the DNA Chain Distance Matrix. In 2023 7th International Conference on Computer Science and Artificial Intelligence (CSAI 2023), December 08--10, 2023, Beijing, China. ACM, New York, NY, USA 8 Pages. https://doi.org/10.1145/3638584.3638607

[11] Melnikov B., Terentyeva.Yu., Chaikovskii.D.. On the application of heuristic algorithms for solving the pseudogeometric version of the traveling salesman problem for the design of communication networks.  Informatization and communication, 2023, № 4, 7-16. https://doi.org/10.34219/2078-8320-2023-14-4-7-16

[10] Lysak T., Zakharova I., Kalinovich A., and Chaikovskii D.. Self-similar light beams at the second harmonic generation in a PT-symmetry structure with strong Bragg coupling at both frequencies, Proc. SPIE 12775, Quantum and Nonlinear Optics X, 1277513 (26 November 2023). https://doi.org/10.1117/12.2686020

[9] Zakharova, I.G., Lysak, T.M., Kalinovich, A.A., Chaikovskii D.. Reflective Properties of Active Layered Media when Generating the Second Optical Harmonic. Bull. Russ. Acad. Sci. Phys. 87, 1791–1795 (2023). https://doi.org/10.1134/S1062873823704075

[8] Melnikov B, Terentyeva Y., Chaikovskii D.*. Pseudogeometric version of the traveling salesman problem: application in quantum physics models and a heuristic variant of point placement. Cybernetics and physics, Vol. 12, No. 3, 2023, 194-200. https://doi.org/10.35470/2226-4116-2023-12-3-194-200

[7] Chaikovskii D., Zhang Y.. Solving forward and inverse problems involving a nonlinear three-dimensional partial differential equation via asymptotic expansions. IMA Journal of Applied Mathematics, 2023, 88, 525-557. https://doi.org/10.1093/imamat/hxad021

[6] Chaikovskii D., Liubavin A., Zhang Y.. Asymptotic expansion regularization for inverse source problems in two-dimensional singularly perturbed nonlinear parabolic PDEs. CSIAM Transactions on Applied Mathematics, 2023, 4(4), 721-757. http://dx.doi.org/10.4208/csiam-am.SO-2022-0017

[5] Melnikov B., Zhang Y., Chaikovskii D.*. An algorithm for the inverse problem of matrix processing: DNA chains, their distance matrices and reconstructing. Journal of Biosciences and Medicines, 2023, 11, 310-320. https://doi.org/10.4236/jbm.2023.115023 

[4] Melnikov B., Zhang Y., Chaikovskii D.*. An inverse problem for matrix processing: an improved algorithm for restoring the distance matrix for DNA chains. Cybernetics and Physics, 2022, 11(4), 217–226. https://doi.org/10.35470/2226-4116-2022-11-4-217-226

[3] Chaikovskii D., Zhang Y. Convergence analysis for forward and inverse problems in singularly perturbed time-dependent reaction-advection-diffusion equations. Journal of Computational Physics, 2022, 470, 111609. https://doi.org/10.1016/j.jcp.2022.111609

[2] Chaikovskii D, Ming Kang Ni. Internal layers for a singularly perturbed differential equation with Robin boundary value conditions. Journal of East China Normal University (Natural Science), 2020(2): 23-34. https://doi.org/10.3969/j.issn.1000-5641.201911043

[1] Chaikovskii D, Ming Kang Ni. Internal layers for a singularly perturbed second-order quasilinear differential equation with discontinuous right-hand side with Neumann and Dirichlet boundary conditions. Austrian Journal of Technical and Natural Sciences, Vienna, 2017, 11-12: 25-31.


Teaching:

1)Introduction into specialty, seminars, faculty of CMC.

2)Algebra and geometry part 1, seminars, faculty of CMC.

3)Algebra and geometry part 2, seminars, faculty of CMC.

4)Mathematical analysis part 3, seminars, faculty of CMC.

關閉

地址:深圳市龍崗區大運新城國際大學園路1號

電話:0755-28323024

郵箱:info@smbu.edu.cn

深圳北理莫斯科大學版權所有 - 粵ICP備16056390號 - 粵公網安備44030702002529號

返回頂部
百家乐历史路单| 百家乐官网庄家出千内幕| 永利高百家乐官网网址| 乐清市| 全讯网新2网站112| 真人百家乐官网大转轮| 大发888信誉娱乐城管理| 做生意选店铺位置| 同德县| 百家乐英皇赌场娱乐网规则| 百家乐官网赌博软件下载| 真人百家乐在线玩| 百家乐官网开户送18元| 24分金| 百家乐官网破解版下载| 大发888娱乐城优惠码| 球探网即时比分| 电子百家乐官网假在线哪| 浦北县| 全讯网源码| 百家乐官网7人桌布| 百家乐官网推荐怎么看| 大发888中文下载| 百家乐看盘技巧| 百家乐官网水浒传| 都安| 威尼斯人娱乐平台网上百家乐| 24山向与周天360度关系示意图| 帝王百家乐官网全讯网2| 大发888yule| 玩百家乐是否有技巧| 波浪百家乐官网测试| 本溪棋牌网| 百家乐游戏图片| 全讯网353788| 百家乐官网桌定制| 泾源县| 太阳城酒店| 百家乐21点游戏| 百家乐官网牌壳| 金臂百家乐官网开户送彩金|